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Abstract Locates the onset of oscillatory instability in the fluid flow inside a differentially heated
cavity with aspect ratio 2 by computing a steady-state and analyzing the stability of the system via
eigenvalue approximation. Discusses the choice of parameters for the Cayley transformation so
that the calculation of selected eigenvalues of the transformed system will reliably answer the
question of stability. Also presents an argument that due to the symmetry of the problem, the first
two unstable modes will have eigenvalues that are nearly identical, and the numerical experiments
confirm this. Finally, locates a co-dimension 2 bifurcation signifying where there is a switch in the
mode of initial instability. The results were obtained using a parallel finite element CFD code
(MPSalsa) along with an Arnoldi-based eigensolver (ARPACK), a preconditioned Krylov method
code for the necessary linear solves (Aztec), and a stability analysis library (LOCA).

1. Introduction
We locate the onset of oscillatory instability for the flow in a differentially heated
cavity by computing a steady-state and analyzing its stability. We consider the flow in
a box of width L ¼ 1 and height H ¼ 2 where the left and right vertical walls are held
constant at different temperatures. Though this problem (with various values of L
and H) has been the subject of much research ( Janssen and Henkes, 1995; Le Quéré
and Behnia, 1998; Mayne et al., 2000, 2001; Paolucci and Chenoweth, 1989; Xin and
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Le Quéré, 1995; Xin et al., 1997), most authors have predicted the onset of oscillatory
convection by using transient calculations. An exception to this is the work of Xin and
Le Quéré (2001), who have conducted a linear stability analysis in a square cavity
using a direct method to solve the linear systems. While our work builds upon this
body of knowledge, we differ in that we are using a general purpose finite element code
and solving the resulting linear systems using iterative methods. This allows us to
study complex geometries and solve much larger systems.

We have formulated the problem so that it is similar to the study by Paolucci and
Chenoweth (1989). In this study they found that as the Rayleigh number is increased,
boundary layers form on both vertical walls, and internal hydraulic jumps form at the
corners. At a critical value of the Rayleigh number, the hydraulic jumps start
oscillating. They also found that there were other frequencies of oscillation present in
the system associated with “wall modes”. The explanation in terms of hydraulic jumps
was first proposed by Ivey (1984), but later authors (Ravi et al., 1994) have objected to
the hydraulic jump interpretation and instead refer to the oscillations of the hydraulic
jumps as “internal wave instabilities.”

In this paper, we verify these results by Paolucci and Chenoweth for the case of
aspect ratio equal to 2 by matching frequencies of oscillations. We find an additional
pair of modes with a lower frequency that destabilize the system at the lowest Rayleigh
number. Our ability to calculate the stability of a steady-state solution allows us to
draw some further conclusions not readily available with transient simulations. We
observe numerically that the eigenvalues of this problem come in pairs where the
eigenvalues are almost identical to each other. One of the eigenvalues in this pair is
associated with a symmetric mode and the other with an anti-symmetric mode. We
give a convincing analytical argument suggesting why this should be the case.

That the eigenvalues come in near identical pairs suggests that by varying other
parameters (such as the Prandtl number and aspect ratio) in the problem, we can obtain
one of these pairs to merge at precisely the point where the system loses its stability.
This is an example of a double Hopf bifurcation, one of the five generic co-dimension 2
bifurcations (Guckenheimer and Holmes, 1983). The double Hopf bifurcation is
especially interesting since it has a four dimensional center manifold, and we are
almost guaranteed of getting chaotic behavior in the immediate vicinity of such a point
in parameter space. By varying the Prandtl number in this problem we have been able
to find a double Hopf bifurcation point. Additionally, the most interesting case we
found resulted not from the eigenvalues in these symmetric/anti-symmetric pairs
crossing, but from when an eigenvalue associated with a wall mode crossed an
eigenvalue associated with an oscillating internal wave. This discovery was enabled
by the complementary capabilities of calculating eigenvalues and eigenvectors and of
tracking Hopf bifurcation points.

This classical problem not only exhibits interesting physical behavior, but also
demonstrates and verifies our eigenvalue analysis capabilities. Our Cayley transform
method, as implemented in the LOCA stability analysis library (Salinger et al., 2002a),
allows us to locate the onset of oscillatory instabilities; in order to locate these
instabilities it is necessary to compute the eigenvalue of the system with largest real
part (Meerbergen and Spence, 1997). It remains an open problem in large-scale
non-symmetric eigenvalue calculations to reliably verify that the rightmost eigenvalue
has been computed. Without that result, scientists and engineers interested in
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computing linear stability require a variety of analysis tools; here we present a Cayley
transform method that is effective in finding the rightmost eigenvalue when the
imaginary part of that eigenvalue is large. One of the goals of this paper is to convince
the reader of the reliability and applicability of this method to other problems of this
type.

The flow due to natural convection in a differentially heated cavity is advectively
dominated; advectively dominated flows are characterized by eigenvalues that have a
large imaginary part relative to the real part. This can result in two computational
difficulties. First, it can be difficult to compute the eigenvalues of the discretized
system. Our choice of Cayley transform along with the use of an Arnoldi-based
algorithm proves to be a reliable method to overcome this difficulty. The second
difficulty is that we may need to discretize the Navier-Stokes equations on a highly
resolved mesh so that the real part of the eigenvalues will approximate those of the
continuous system.

The performance of our code on this problem demonstrates that we do need fine
meshes to compute accurately converged real parts of the eigenvalues of interest. We
will show that this is due to discretization errors, not to a failure of the eigensolver to
compute the correct eigenvalues. In fact, we emphasize that the eigensolver handles
with ease the large systems we are studying. Because the limitation lies in the
discretization, we claim that we would have the same difficulty in accurately
computing these flows using a transient finite element code.

Our calculations are carried out using a combination of a general purpose massively
parallel unstructured grid finite element CFD code, MPSalsa (Shadid, 1999), and an
existing Arnoldi-based eigensolver, ARPACK, (Lehoucq et al., 1998) and a parallel
iterative linear solver using preconditioned Krylov methods package, AZTEC
(Tuminaro et al., 1999). MPSalsa discretizes the Navier-Stokes equations and applies
Newton’s method to solve for the steady-state. Because our interest is in discretized
Navier-Stokes equations in general geometries that lead to linear systems of order
104-107 for two- and three-dimensional problems, direct methods (even sparse direct
methods) for the linear solves or subspace iteration for the eigensolve are not an option.
We will demonstrate that parallel Krylov iterative methods can be reliably used for
large-scale linear stability analysis on massively parallel machines.

Our approach is as reliable as calculations accomplished with transient methods;
our approach is more efficient because we use a Krylov subspace method and use a
frozen Jacobian, so we avoid the non-linear solve made at every time step by a transient
calculation. While we cannot guarantee that our approach will reliably locate all
instabilities because of the need to intelligently pick the parameters in the Cayley
transformation, we assert that this is the same risk associated with choosing the time
step and integration time when detecting instabilities through time integration.
Moreover, our approach also provides qualitative information on the fluid flow not
otherwise available. As we show, the information from the eigensolver can readily be
used to track instabilities in parameter space and to locate higher co-dimension
bifurcations.

We organize our paper as follows. In Section 2, we introduce our formulation of the
problem of the flow in a differentially heated cavity that provides the numerical
example for our study. We also state the Navier-Stokes equations with the Boussinesq
approximation governing the motion of the flow and present a novel result regarding
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the symmetry of the problem and the resulting nearly identical eigenvalues. In Section
3, we discuss the finite element code MPSalsa, the Cayley transform as implemented in
the LOCA library, the choice of Cayley parameters and the Arnoldi-based eigenvalue
package ARPACK. Section 4 gives linear stability analysis results for convection
differentially heated cavity, including comparisons with published results and mesh
resolution studies. In Section 5, we highlight some of the numerical issues that arise in
the linear stability analysis. Section 6 presents results of tracking instabilities as a
function of the Prandtl number, including the detection of a co-dimension 2 bifurcation.
Section 7 summarizes our findings.

2. Problem formulation
In this section, we describe the problem of convection in a two-dimensional vertical
cavity and give the basic equations that govern our flow. We present the novel result
that due to the symmetry of the problem we have a pair of nearly identical eigenvalues.

2.1 The problem of flow in a differentially heated cavity
We consider the flow in a cavity of width L and height H. The left vertical wall is held
at a constant temperature 2DT/2, and the right vertical wall is held at the temperature
DT/2. We impose no-flux boundary conditions at the horizontal walls and no-slip
boundary conditions on all walls.

We solve the Navier-Stokes equations with the Boussinesq approximation for the
flow of a thermally driven incompressible fluid:

›u

›t
þ u ·7u þ

1

r
7p ¼ n72u þ gbðT 2 TrefÞeg ð1Þ

›T

›t
þ u ·7T ¼ k72T ð2Þ

7 · u ¼ 0 ð3Þ

where u ¼ uex þ vey þ wez; p and T are the velocity, pressure and temperature; r, n
and k are the density, kinematic viscosity and thermal diffusivity; g and b are the
acceleration of gravity and the thermal expansion coefficient of the fluid. The vector eg

is a unit vector in the direction of the gravity vector. The Boussinesq approximation
assumes that the temperatures T are all close enough to an average temperature Tref

that we can ignore the variations in density in all terms in the equations except for the
forcing term due to gravity. In these equations we subtract the hydrostatic part of the
pressure.

The boundary conditions are zero velocities on all four walls, adiabatic Neumann
conditions on the top and bottom walls for the heat equations, and Dirichlet
temperatures on the side walls:

T 2
L

2
; y

� �
¼

DT

2
and T

L

2
; y

� �
¼ 2

DT

2
:

Other than the physical constants appearing in the equations, the only parameters
appearing in our problem are the temperature difference DT, the characteristic
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geometrical length L, and the geometrical aspect ratio. The dimensionless parameters
that result from the parameters are the Rayleigh number,

Ra ¼
gbDTL 3

kn
;

and the Prandtl number,

Pr ¼
n

k
:

We achieve the desired Rayleigh and Prandtl numbers by selecting r ¼ L ¼ DT ¼ 1,
g ¼ Pr £ 101, n ¼ Pr £ 1023 and k ¼ 1 £ 1023. We then control the Rayleigh number
using Ra ¼ b £ 107:

2.2 Symmetry and near-degeneracy of the eigenvalues
Because the right vertical wall is held at a temperature that is the negative of the left
vertical wall, the governing equations are invariant under the following symmetry
transformations:

RzðxÞ ¼

2Tð2xÞ

2uð2xÞ

pð2xÞ

0
BB@

1
CCA ð4Þ

where we are representing our solution in the form

zðxÞ ¼

TðxÞ

uðxÞ

pðxÞ

0
BB@

1
CCA

If zðxÞ is a solution to our equations, then so is Rz(x). However, it is not necessary that
solutions to our equations satisfy RzðxÞ ¼ zðxÞ:

We are analyzing the stability of symmetric solutions, so all eigenfunctions will
either be symmetric or anti-symmetric. Any simple eigenfunction will either satisfy
RfðxÞ ¼ fðxÞ or RfðxÞ ¼ 2fðxÞ: Symmetry can only be broken through a
bifurcation, so that a solution that is initially symmetric will stay symmetric as we
vary a parameter unless we encounter a bifurcation point.

When our system goes unstable, the internal waves will either oscillate in a
symmetric manner or in an anti-symmetric manner. Physically we expect that if the
walls are well separated, then the fluid on the left should be able to oscillate
independently of the fluid on the right. In order for this to be so, we would have to be
able to construct eigenfunctions where the fluid on the left oscillates but that on the
right does not. The only way to do this is we should have multiple eigenvalues, with
one symmetric eigenvector and the other anti-symmetric. This is not quite what occurs
because the two sides are not completely separated, but we almost get this. Hence we
have two eigenvalues that are almost identical to each other. This result is borne out in
our eigenvalue calculations, presented in Section 4.
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3. Methodology
In this section, we discuss the numerical methods used by MPSalsa to locate
steady-state solutions of equations (1)-(3), the formulation of the eigenvalue problem
and our Cayley transform method, and the numerical solution of the eigenvalue
problem.

3.1 Spatial discretization and the non-linear solve
A full description of the numerical methods used by MPSalsa to locate steady-state
solutions of equations (1)-(3) is available in the work of Shadid (1999) and the references
are listed therein. A brief overview is presented in this section.

A mesh of quadrilaterals for two-dimensional problems and hexahedra for
three-dimensional problems is generated to cover the domain. Although the code is
written for general unstructured meshes to represent systems with complex geometries
(Salinger et al., 1999), the meshes used for the problem in this paper are structured. For
parallel runs, the mesh is partitioned using the Chaco code (Hendrickson and Leland,
1995) in a way that will distribute work evenly while minimizing communication costs
between processors.

A pressure stabilized Petrov Galerkin finite element method (PSPG-FEM) (Hughes
et al., 1986) is used to discretize the time-invariant versions of the governing partial
differential equations (1)-(3) into a set of nonlinear algebraic equations. This
formulation includes a pressure stabilization term so that the velocity components,
temperature and pressure fields can all be represented with equal order nodal basis
functions. This formulation does not include the upwinding terms that appear in the
streamline upwind Petrov-Galerkin (SUPG) (Brooks and Hughes, 1982) and
Galerkin/least-squares (GLS) formulations (Hughes et al., 1989), because this term
was found in a related study to increase the discretization error in computing
bifurcation point over PSPG-FEM (Salinger et al., 2002b). The PSPG-FEM method is
a consistent stabilized scheme (as the SUPG and GLS schemes) because when the
exact solution is inserted, the Boussinesq equations are satisfied exactly. We use
bilinear and trilinear nodal elements for two- and three-dimensional problems,
respectively.

Discretization of (1)-(3) results in the matrix equation

M 0

N 0

 !
_u

_p

" #
þ

Ku;T þ CðuÞ 2D

DT þ G Kp

 !
u

p

" #
2

g

h

" #
¼

0

0

" #
ð5Þ

where u is the vector of fluid velocity components and temperature unknowns, p the
pressure, M the symmetric positive definite matrix of the overlaps of the finite element
basis functions, Ku,T the stiffness matrix associated with velocity and temperature,
C(u) the nonlinear convection, D the discrete (weak) gradient, DT the discrete (weak)
divergence operator and Kp the stiffness matrix for the pressure. G, Kp, and N are
stabilization terms arising from the PSPG-FEM. The vectors g and h denote terms due
to boundary conditions and the Boussinesq approximation.

The resulting nonlinear algebraic equations arising from setting the time derivative
terms to zero are solved using a fully coupled Newton-Raphson method (Shadid et al.,
1997). An analytic Jacobian matrix for the entire system is calculated and stored in a
sparse matrix storage format. At each Newton-Raphson iteration, the linear system is
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solved using the Aztec package (Tuminaro et al., 1999) of parallel preconditioned
Krylov iterative solvers. The accuracy of the steady-state solve is set by the following
stopping criterion,

1

N

XN

i¼1

jdij

1Rjxij þ 1A

� �2
 !1

2

, 1:0; ð6Þ

where 1R and 1A are the relative and absolute tolerances desired, di the update for the
unknown xi and N the total number of unknowns. We use relative and absolute
tolerances of 1025 and 1028, respectively, for this study. In Aztec we exclusively use
an unrestarted GMRES iteration with a non-overlapping Schwarz preconditioner
where an ILU preconditioner is used on each subdomain (each processor contains one
subdomain). These methods enable rapid convergence to both stable and unstable
steady-state solutions. The scalability of these methods to large system sizes and
number of processors is demonstrated by the solution of a 16 million unknown model
on 2,048 processors (Burroughs et al., 2001).

3.2 The discretized eigenvalue problem and Cayley transforms
The PSPG-FEM results in a spatial discretization of the Navier-Stokes equations with
the Boussinesq approximation. This leads to a finite dimensional system of differential
algebraic equations of the form

B _x ¼ FðxÞ; xð0Þ ¼ x0; ð7Þ

where the matrix B is singular (due to the divergence free constraint) and x is a vector
containing the nodal values of the velocities, temperature and pressure at the nodes of
the finite element mesh. Because of the stabilization terms in the PSPG discretization,
B, the matrix associated with the time derivative term in equation (5), is a
non-symmetric matrix.

One can determine the stability of a steady-state solution x s of FðxsÞ ¼ 0 in one of
the two ways: by solving the generalized eigenvalue problem that results from the
linearization of equation (7) about the steady-state, or by using a time integration
scheme.

The first approach solves the generalized eigenvalue problem

lBz ¼ Jz: ð8Þ

that arises from the linearization of equation (7) about the steady-state. The matrix J is
the Jacobian of F( · ) linearized about x s. We assume that the eigenvalues are ordered
with respect to decreasing real part; real ðliþ1Þ # realðliÞ: If all the eigenvalues of
problem (8) have negative real parts, then the steady-state is stable.

We use a Cayley transform so that we find the eigenvalues gi of the system

ðJ 2 sBÞ21ðJ 2 mBÞz ¼ g z

that are related to the eigenvalues lk of problem (8) via

gi ¼
lk 2 m

lk 2 s
i ¼ 1; . . .; n; k ¼ 1; . . .; n
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We choose s . 0 and m ¼ 2s ; we choose the value of s so that it is of similar
magnitude to the imaginary part of the eigenvalue of interest, and so s . Reðl1). This
transformation has the property of mapping a l in the right half of the complex plane
(i.e. an unstable mode) to a g outside the unit circle, and those on the left half plane (i.e.
a stable mode) to a g inside the unit circle. That is,

realðlÞ . 0 ) kgk . 1:0 and realðlÞ , 0 ) kgk , 1:0:

Since Arnoldi’s method will converge more rapidly to those eigenvalues with larger
magnitudes, this is a very desirable property for calculating eigenvalues for use in
linear stability analysis.

The use of preconditioned Krylov methods for both eigenvalue problem and
ensuing linear solves for large-scale two- and three-dimensional problems is not
generally undertaken. The results of our paper will show that we have found success in
this method. The computation of eigenvalues of the linearized steady-state has received
much attention in the last 15 years (Christodoulou and Scriven, 1988; Cliffe et al. 1993;
van Dorsselaer, 1997; Edwards et al., 1994; Fortin et al., 1997; Lehoucq and Salinger,
2001; Mittelmann et al., 1994; Morzyńki et al., 1999; Tukerman et al., 2000). The
consensus of this research is to convert the generalized eigenvalue problem (8) into a
standard eigenvalue problem and then solve the resulting set of linear equations
during each iteration of the eigensolver. Most of the authors of these papers then solve
the eigenvalue problem using inverse subspace iteration or Arnoldi’s method with a
sparse direct method for the resulting linear set of equations (Christodoulou and
Scriven, 1988; Cliffe et al., 1993; van Dorsselaer, 1997; Fortin et al., 1997; Morzyńki et al.,
1999; Mittelmann et al., 1994). This typically limits the linear stability analysis to
two-dimensional problems. Our approach of using Cayley transforms to reduce
problem (8) to a standard eigenvalue problem is successful, and the eigensolver
performs with ease on our large (order 105-107) systems.

The second approach to computing the stability of a steady-state is to use a time
integration scheme; standard time integration schemes typically perform a nonlinear
solve (due to convection) at every time step. We can think of these as computing an
iteration of the form

xnþ1 ¼ GðxnÞ: ð9Þ

The iteration is initialized with an iterate near the steady-state and if the iteration
converges toward the fixed point x s, then the steady-state is declared stable. If x 0 is an
initial condition for equation (9), then the convergence and numerical stability of the
fixed point iteration is determined by the spectral radius of the Jacobian of G( · ). In
particular, denote the eigenvalues of Gx(x 0) by gi ordered so that jgiþ1j # jgij:

A popular time integration scheme is given by the trapezoidal rule and results in the
iteration

xnþ1 ¼ GðxnÞ ¼ B 2
Dt

2
J

� �21

B þ
Dt

2
J

� �
xn ð10Þ

where the Jacobian is “frozen” at the steady-state. The eigenvalues gi and li are
related via
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gi ¼ 2
lk þ

2
Dt

lk 2
2
Dt

i ¼ 1; . . .; n; k ¼ 1; . . .; n

and so, in principle, the eigenvalues of problem (8) can be determined by computing
those of

2ðJ 2 sBÞ21ðJ 2 mBÞz ; Gz ¼ 2g z

where m ¼ 2s ¼ 2=Dt: Note that this is the same as our choice of Cayley transform
with m ¼ 2s ¼ 2=Dt:

The above discussion demonstrates that at a steady-state, time integration and
computing the eigenvalues of problem (8) are intimately related when a frozen Jacobian
approximation is employed. We remark that although large-scale eigensolvers
(subspace iteration or Arnoldi’s method) favor the computation of those eigenvalues
largest in magnitude, these may not be the desired rightmost eigenvalues. This occurs
when the flow is advectively dominated. Our choice of a Cayley transform allows us to
overcome this difficulty.

We now explain why Arnoldi’s method for the eigenvalue solvers is preferred to the
typically undertaken transient calculation. A transient calculation (with the linearized
Jacobian J) or fixed point iteration is equivalent to the power method on G. The rate of
convergence to the eigenvector associated with g1 is jg2/g1j. The rate of convergence
improves to jgm+1/g1j if the power method is replaced by subspace iteration on m
vectors. However, the resulting rate of convergence can be intolerable. The rate of
convergence to g1,g2,. . .,gr may be dramatically improved by projecting G onto the
column space of

x0;x1; . . .;xm:

Arnoldi’s (1951) method iteratively determines an orthogonal basis for the above
column space that by definition is a Krylov subspace.

3.3 Arnoldi’s method and the numerical solution of the eigenvalue problem
The remainder of the section reviews several issues with the use of Arnoldi’s method
for the numerical solution of the eigenvalue problem. We use the parallel
implementation P_ARPACK (Maschhoff and Sorensen, 1996) of ARPACK (Lehoucq
et al., 1998) for computing the eigenvalues of problem (8) via Cayley transforms. We
refer the reader to see the work of Lehoucq and Salinger (2001) for information
regarding the use of ARPACK for problems in linear stability analysis.

We discuss the selection of the Cayley parameters s and m. There are two strategies
by which we can choose the Cayley parameters. The first strategy was presented in the
previous subsection and draws upon a connection with the trapezoidal rule in fixed
point iteration. This is the strategy we employ in this study; we will discuss the
implications of this choice in Section 5. The second strategy was presented by Lehoucq
and Salinger (2001); the Cayley parameters are selected l1,s , m so that the
condition number of (J 2 sB)21(J 2 mB) is bounded and so can be efficiently solved
with preconditioned Krylov methods. This second strategy tends to be more efficient
than the first strategy for finding eigenvalues with zero or small imaginary parts;
however, it is not as reliable. (Nor is there a relationship with a common fixed point
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iteration scheme for determining the stability of the steady-state. The analogous
time-stepper is unconditionally unstable for all modes.) The lack of reliability
manifests itself when the flow is advectively dominated so that the rightmost ls do not
correspond to the largest in magnitude g s. We remark that we encountered this
unreliability in the solution of the problem of the secondary bifurcation from steady
rolls into oscillatory rolls in the Rayleigh-Bénard problem, discussed by Burroughs
et al. (2001): the first strategy finds the eigenvalues of interest while the second does
not.

We briefly overview several salient issues. Further details are available in the
discussion of the numerical experiments performed in Sections 4 and 5, and in the work
of Lehoucq and Salinger (2001).

(1) The numerical solution of the linear system resulting from using a Cayley
transform is found by exclusively using an unrestarted GMRES iteration with a
non-overlapping Schwarz preconditioner where an ILU preconditioner is used
on each sub-domain (each processor contains one sub-domain).

(2) We must choose the size of the Arnoldi space m (needed by ARPACK). Our
findings, in general, are that for the most difficult problems m was never larger
than 160 and 80 was typically more than adequate. We remark that although
ARPACK does provide a capability to restart the Arnoldi iteration, our
experiments did not use this capability. Instead, our focus is to examine the use
of preconditioned Krylov methods for linear stability analysis.

(3) The tolerance needed by the GMRES iteration and ARPACK and their
relationship was studied by Lehoucq and Salinger (2001), and adjusts
automatically to the scaling of the problem. In general, these tolerances were no
larger than 1026 and no smaller than 1029.

(4) Since the Boussinesq equations (1)-(3) model an incompressible fluid, the
starting vector for ARPACK is selected as J21Bw, where w is a random vector.
The resulting vector is divergence free (Meerbergen and Spence, 1997).

(5) The P_ARPACK subroutines pdnaupd and pdneupd were modified to
implement the Cayley transform and an improved check for termination. The
eigensolve is terminated when l1,l2,. . .,lr and corresponding approximate
eigenvectors for a user specified r satisfy the residual tolerance. This code is
available through the LOCA library (Salinger et al., 2002a).

4. Results of convection in a differentially heated cavity
We conduct our numerical experiments at Pr¼ 0.71 and with H ¼ 2 and L ¼ 1 in
order to compare our results with those of Paolucci and Chenoweth (1989). We validate
our results through a comparison with the numerical solutions of Paolucci and
Chenoweth and verify our results by tracking the residual accuracy of our computed
eigenvalues and linear systems and through a study of convergence as we refine the
finite element mesh.

Although Paolucci and Chenoweth did not make the Boussinesq approximation in
their calculations, they purposely used conditions that are well approximated by the
Boussinesq approximation. In particular, DT=TAV ¼ 0:01 where DT is the difference
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between the wall temperatures and TAV is the average of the wall temperatures. When
A ¼ H=L ¼ 2 they found a Rayleigh number of approximately 3 £ 107 with a
dimensionless frequency of f ¼ 173:2: (Because we do not make our equations
dimensionless in the same way, to compare the frequencies fPC reported in Paolucci and
Chenoweth to the imaginary part of our computed eigenvalues we look at
v ¼ f PC £ 2f=1; 000:)

We solve quadrilateral finite element meshes with bilinear basis functions of
40 £ 80, 80 £ 160, 160 £ 320, 320 £ 640 and 640 £ 1; 280. The spacing between the
mesh points increases exponentially as we move away from the walls, with the points
in the middle of the box having mesh spacings about 20 times as large as those near the
walls.

For the finest mesh, we have 3,284,484 unknowns and solve on 256 processors
of the Sandia-Intel TFlop machine (ASCI Red) with 333 MHz Pentium processors.
On this final mesh it is somewhat difficult to achieve convergence to the
steady-state solution; we rely on continuation to find the steady-state at the
desired Rayleigh numbers. The number of GMRES iterations for each eigensolver
iteration is approximately 200. The time to compute eigenvalues for the finest
mesh is 6 h for Ra ¼ 3:0 £ 107: We set the Cayley parameters s ¼ 5, m ¼ 25 and
the Arnoldi size to 160.

Table I shows the eigenvalues for the 160 £ 320 mesh and how they compare with
the results of Paolucci and Chenoweth. Paolucci and Chenoweth performed
calculations at Rayleigh numbers of 3 £ 107 and 2 £ 107 for A ¼ 2:0: The frequency
they report at Ra ¼ 3 £ 107 is in excellent agreement with the frequency predicted by
our eigenvalue calculation (1.088 vs 1.097). When Ra ¼ 2 £ 107 we still get good
agreement (2.316 vs 2.338), but the frequency they report agrees with what we calculate
to be the third mode. While they report the flow as being stable, our eigenvalue
calculations report that the flow is unstable because the first two modes have positive
real parts. Possible explanations for why the previous work may have missed this
mode include that the ungraded mesh used for this data point (generated with the
computing power available 14 years back) may not have fully resolved the flow or that
the starting point for the transient calculation did not contain a significant contribution
in the direction of this instability (which is very close to being neutrally stable).

In order to see how the steady-state solution converges with mesh refinement we
have included Table II. This table shows the three most unstable eigenvalues and the
maximum value of the x-velocity calculated with our various meshes. We are clearly
getting convergence, but the convergence of the maximum x-velocity with mesh is

Ra(107) v1 v2 l1 l2 l3

3.0 1.088 0.3295^1.097i 0.3259 ^ 1.099i 0.0961 ^ 12.14i
2.75 0.2678 ^ 1.056i 0.2634 ^ 1.0574i 0.0474 ^ 11.44i
2.5 0.1937 ^ 1.010i 0.1884 ^ 1.012i 20.0017 ^ 10.73i
2.25 0.1067 ^ 0.9584i 0.1001 ^ 0.9628i 20.0479 ^ 9.997i
2.0 2.316 0.0138 ^ 0.8946i 0.0001 ^ 0.9081i 20.0681 ^ 2.338i
1.75 20.0631 ^ 0.8143i 20.0649 20.0757 ^ 2.177i

Note: v1 and v2 are based on the frequencies reported by Paolucci and Chenoweth (1989) and are
available for comparison for the two Rayleigh numbers 3.0 £ 107 and 2.0 £ 107

Table I.
The eigenvalues for

convection in a cavity
with mesh 160 £ 320
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somewhat slow and clearly is no better than the convergence with mesh of the
eigenvalues.

We see slow convergence toward the real parts of the most unstable eigenvalue.
(Other test problems we have studied that are not strongly advectively dominated flows
show quadratic convergence rates (Burroughs et al., 2001).) We believe that this
problem demonstrates the limitations of looking for grid independence with a linear
basis functions, particularly for highly advective flows. However, we note that the
difficulties are with the resolution of the discretization and not in solving the eigenvalue
problem. We emphasize that a transient solution is not any more reliable than the
eigenvalue computations, and that in fact our eigensolver encounters no trouble in this
3 million unknown system. We also note that this problem is two-dimensional; if we
were trying to achieve the same resolution on a three-dimensional problem, we would
have billions of unknowns.

5. Numerical issues
Because we use parallel preconditioned Krylov iterative methods for the eigenvalue
problem and resulting linear sets of equations, our results are obtained by specifying
the values of certain adjustable parameters: we need to specify the Cayley parameters
s and m and the size of the Arnoldi space. We briefly review our verification
procedures used for our numerical experiments; as several issues have been discussed
in an earlier paper, which used the same CFD Code, MPSalsa, and eigensolver,
P_ARPACK, but a different Cayley method, the reader is referred to Lehoucq and
Salinger (2001) for information regarding details of linear algebra tolerances. Our main
emphasis in this section is to illustrate how sensitive our results are to the Cayley
parameters.

Denote by lc and zc the approximations to an eigenvalue and eigenvector of problem
(8). We verify these approximations by computing the norm of the residual

Direct residual ¼
kJzc 2 lcBzck

kBzck
; ð11Þ

where k · k is the Euclidean norm of a vector. These errors vanish only when lc and zc

are an eigenpair for problem (8). Note that these measures are independent of the
scaling of zc.

We now discuss the Cayley parameters and the size m of the Arnoldi space used by
ARPACK. These two parameters are related because if one chooses the Cayley
parameters poorly, a large Arnoldi space will be required to obtain accurate

N l1 l2 l3 x-velocity coordinates

40 0.3217^ 1.020i 0.3192 ^ 1.020i 20.0778 ^ 2.856i 0.8054 (0.119, 1.97)
80 0.3326 ^ 1.091i 0.3294 ^ 1.092i 20.0003 ^ 11.98i 0.7993 (0.129, 1.97)

160 0.3295 ^ 1.097i 0.3295 ^ 1.099i 0.0961 ^ 12.14i 0.8032 (0.124, 1.97)
320 0.3275 ^ 1.096i 0.3238 ^ 1.098i 0.1040 ^ 12.19i 0.8048 (0.124, 1.97)
640 0.3267 ^ 1.096i 0.3231 ^ 1.097i 0.1039 ^ 12.20i 0.8052 (0.122, 1.97)

Note: For the velocity in the problem of the onset of convection in a heated cavity with Ra ¼ 3.0 £ 107

with varying mesh resolution of N £ 2N

Table II.
Eigenvalues and
maximum computed
values
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eigenvalues. Our experience dictates that it is best to choose the Cayley parameters so
that they are of the same order of the imaginary part of the most unstable eigenvalue.
We believe that this is a reasonable assumption because the user typically has some
idea of the location of the imaginary part of the most unstable eigenvalue. For example,
this information is available if we are solving a problem that is a small variation of a
problem that has already been solved or if we have access to related experimental or
computational results. This is a drawback to the method if there is no prior evidence
regarding the size of the imaginary portion of the most unstable eigenvalue. However,
this is the same issue as choosing a time step size for transient runs that is not so large
as to step over oscillations, or a total time that is too small to sense the oscillations.

Table III shows the errors in the most unstable eigenvalue of the onset of convection
in a differentially heated cavity as a function of the Cayley parameters and the size of
the Arnoldi space. These calculations were accomplished with a 160 £ 320 mesh and a
Rayleigh number of 3:0 £ 107. We see that changing the Cayley parameters from ^1 to
^0.5 or ^5 does not significantly degrade the performance of the algorithm. By the
time the Cayley parameters are ^20 we are seeing some degradation in the algorithm,
but we are still getting quite good convergence after 160 iterations. Choosing the
Cayley parameters too large is the same as integrating in time with too small a time
step; it requires more Arnoldi iterations (time steps) to detect an oscillation. Notice that
we also sometimes misidentify the most unstable eigenvalue; looking at the error,
though, we see that this misidentified eigenvalue has not converged to a reasonable

s ¼ 2m Arnoldi size Eigenvalue Direct residual

0.5
40 0.3295 ^ 1.097i 5.063 £ 1028

80 0.3295 ^ 1.097i 4.564 £ 1028

160 0.3295 ^ 1.097i 4.564 £ 1028

1
40 0.3295 ^ 1.097i 2.597 £ 1028

80 0.4774 ^ 13.03i 8.685 £ 100

0.3295 ^ 1.097i 2.904 £ 1028

160 0.8677 ^ 17.39i 7.885 £ 100

0.3295 ^ 1.097i 2.904 £ 1028

200 0.3295 ^ 1.097i 2.904 £ 1028

5
40 0.5761 ^ 12.98i 3.726 £ 1021

0.3295 ^ 1.097i 7.769 £ 1025

80 0.3295 ^ 1.097i 2.448 £ 1027

160 0.3295 ^ 1.097i 7.281 £ 1028

20
40 0.6094 ^ 17.35i 3.056 £ 1021

0.4343 ^ 20.11i 4.553 £ 1021

0.2769 ^ 1.060i 4.801 £ 1022

80 0.3272 ^ 1.096i 2.256 £ 1024

160 0.3300 ^ 1.098i 8.196 £ 1025

Note: These results are for the most unstable eigenvalue at Ra ¼ 3.0 £ 107 and a grid of 160£ 320. In
the case where the eigenvalue of interest, 0.3295 ^ 1.097i, is not identified as the most unstable
eigenvalue, we have listed both eigenvalues

Table III.
The effect of Arnoldi size

and Cayley parameters
on the problem of

convection in a
differentially heated

cavity
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tolerance. In these situations increasing the size of the Arnoldi space allows us to
compute the eigenvalues more accurately.

The accuracy of all of these calculations can also be limited by the accuracy to
which we solve our linear systems at each Arnoldi iteration. For example, in Table III
we do not get appreciably better results by using an Arnoldi space of size 160 instead
of 80. In general, to improve the accuracy of our eigenvalue calculations we must either
increase the size of the Arnoldi space or choose a better value for m ¼ 2s or decrease
the tolerance to which we solve our linear systems. We should note, however, that these
eigenvalue calculations are already highly converged. Even those with residuals near
1024 instead of below 1027 had the eigenvalues correct to three digits. A comparison
to the mesh convergence results in Table II indicates that the limiting factor in
predicting the eigenvalues to the real PDE system is more likely to be the discretization
than the eigensolver.

6. Combining linear stability with bifurcation tracking
The method of determining solution stability through eigenvalue calculations of
steady solutions lends itself to the use of bifurcation tracking algorithms. In particular,
we use the Hopf bifurcation tracking algorithm that was presented and verified by
Salinger et al. (2002b) for the benchmark problem of flow in a differentially heated
cavity of aspect ratio 8. In this section, we show how the combined capabilities of linear
stability and bifurcation tracking can be used to provide considerable insight into the
stability picture for the model problem of flow in a differentially heated cavity of aspect
ratio 2.

The results in Table I indicate that, with the 160 £ 320 mesh, the first instability for
a fluid with Pr ¼ 0:71 occurs for 1:75 £ 107 , Ra , 2:0 £ 107. Using the solution
vector, eigenvector, and imaginary part of the eigenvalue at Ra ¼ 2:0 £ 107; we
invoked the Hopf bifurcation tracking algorithm in LOCA (Salinger et al., 2002a). This
algorithm uses a Newton algorithm to directly solve the Hopf bifurcation and requires
a good initial guess as supplied by the eigensolver.

The Hopf tracking algorithm located the first instability, which we will term IA, at
Ra ¼ 1:9608 £ 107 and the second, IS, at Ra ¼ 1:9997 £ 107: Visualization of the
eigenmodes shows that the first mode is anti-symmetric with respect to the symmetry
of the equations, as shown in equation (4), while the second is the symmetric version of
the same physical mode.

We became curious about how persistent was the phenomenon that the
anti-symmetric mode is the first to lose stability as a function of another system
parameter. We tracked the Rayleigh number where the Hopf bifurcation occurs as a
function of the Prandtl number. We did not find a change in the order of instability as
we increased to Pr ¼ 1:3. However, when decreasing the Prandtl number to generate
the IA and IS curves in Figure 1, we found that the curves cross at Pr ¼ 0:6368 and
Ra ¼ 2:908 £ 107; indicating that indeed the symmetric mode becomes more unstable
than the anti-symmetric mode for Prandtl numbers in the neighborhood below that.

However, verification of this double-Hopf bifurcation with the eigensolver led to the
discovery of two other complex pairs of eigenvalues with positive real parts. Further
computations produced the curves labeled WA and WS in Figure 1. These modes are
the anti-symmetric and symmetric versions of the wall mode described by Paolucci and
Chenoweth (1989). We can see graphically that a co-dimension 2 bifurcation occurs
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near Pr ¼ 0:681 and Ra ¼ 2:22 £ 107: At this Prandtl number there is a switch
between whether the IA or WA mode is the first to go unstable. Figure 2 shows a
visualization of the base flow and temperature contours at this point, and Figure 3
shows the temperature profiles for both modes that go unstable at this point. Since
these are oscillatory instabilities, both real and imaginary parts of the eigenvectors are
visualized for each mode.

As the two wall modes continue to lower Prandtl numbers, they also appear to
cross. At this point, convergence was lost for the anti-symmetric mode. One interesting
point is that this crossing of branches WA and WS occurs where the frequencies
appear to be equal, while this was not the case when the IA and IS modes cross. This
added degeneracy could be responsible for the difficulties in convergence.

7. Conclusions
We have completed a linear stability analysis on the problem of the flow in a
differentially heated cavity. We have identified the frequency of the oscillatory
instability for various Rayleigh numbers for an aspect ratio of 2 and a Prandtl number
of 0.71. The frequency we identify at Ra ¼ 3:0 £ 107 is in excellent agreement with the
prior published results, but for Ra ¼ 2:0 £ 107 we find two modes more unstable than
that found by Paolucci and Chenoweth (1989), and the frequency of the third most
unstable mode corresponds to their published result. We also present an argument that
the first two most unstable modes will have eigenvalues that are nearly identical, and
our eigenvalue calculations demonstrate this is the case.

We have demonstrated both capabilities and limitations of using a general purpose
finite element code and eigensolver for fluid stability calculations. Our interest is in
large problems in possibly complex geometries where it is necessary to use iterative
methods for the linear algebraic calculations. Our method has proved to be reliable in

Figure 1.
The tracking of four Hopf
bifurcations as a function

of the Prandtl number
shows that the IA mode

goes unstable at the lowest
Ra until Pr ¼ 0.681, at

which time the WA mode
is the first to go unstable.

These modes are shown in
Figure 3
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identifying the most unstable eigenvalue in advectively dominated flows because of
our choice of Cayley transforms employed. The limitation of our method is that it is
computationally intensive to reach high levels convergence with a low order finite
element discretization. We do not believe that our eigenvalue techniques have reached
any inherent limitation.

In flows that are advectively dominated, computing stability using either an
eigensolver or transient calculations will produce the same difficulties in that they will
require a fine discretization of the finite element mesh. We maintain that our results are
as reliable as those obtained using transient integration, but that our results are more
efficiently computed because we use a Krylov subspace method instead of the power
method, and because we use a frozen Jacobian. We believe that our use of
preconditioned Krylov iterative methods were successful because of the high quality
and robust implementation of these algorithms, ARPACK and Aztec.

Determination of stability through calculation of steady-states and leading
eigenvalues and eigenvectors lends itself well to using bifurcation tracking algorithms.
We have shown the power of using these complementary techniques by uncovering the
stability behavior for a range of Prandtl number. A co-dimension 2 bifurcation
representing the exchange of initial instability between interior and wall modes was
found to exist with just a 5 percent decrease in the Prandtl number from the conditions
studied earlier.

Figure 2.
This plot shows the steady
solution where it loses
stability with respect to
two modes, at the
co-dimension 2 bifurcation
where the IA and WA
branches cross in Figure 1
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Figure 3.
The modes of instability at

the co-dimension 2
bifurcation are visualized
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